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Abstract

A fully nonlinear and fully dispersive method for the interaction between free surface waves and a variable bottom
topography in space and time in three dimensions is derived. A Green function potential formulation expresses the normal
velocity of the free surface in terms of the bathymetry and its motion. An explicit, fast version of the method is derived in
Fourier space with evaluations using FFT. Practice shows that the explicit method captures the most essential parts of the
wave field. This leads to a time-integration that is very accurate and orders of magnitude faster than existing full potential
formulation methods. Fully resolved simulations of the nonlinear and dispersive wave fields are enabled from the gener-
ation to the shoaling of the waves, including the onshore flow which is handled by suitable numerical beaches.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The modelling of nonlinear motion of water waves interacting with a fixed, variable and/or moving bottom
topography is important from both the fundamental and practical points of view. Models that resolve the fully
nonlinear and dispersive wave effects are important to free surface flows generated by slide motion, see e.g.
[8,18,23]. The mechanics of the sliding masses is important as well [25]. The transformation of tsunami waves
moving over strongly variable topography including deep and shallow regions and the detailed formation pro-
cess of solitary waves as the tsunami waves move from the deep to shallow sea are still unclear. It has been
suggested that fully nonlinear and fully dispersive models are required to properly resolve these issues.

The extended Boussinesq models have been improved during the last decade by using the velocity at a cer-
tain depth as a dependent variable, as introduced by Nwogo [22]. By using this trick, Wei et al. [28] were able
to achieve a wider range of validity of their two-dimensional model over the entire range of water depths. The
method by Nwogu was used to improve the three-dimensional highly nonlinear and dispersive Boussinesq
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2006.08.014

* Corresponding author.
E-mail addresses: dorianf@math.uio.no (D. Fructus), johng@math.uio.no (J. Grue).

mailto:dorianf@math.uio.no
mailto:johng@math.uio.no


D. Fructus, J. Grue / Journal of Computational Physics 222 (2007) 720–739 721
models [2,21,20] and was employed by Lynett and Liu [19] to derive an improved model for the study of slide
generated tsunamis and the run-up. In the latter study a weak frequency dispersion was assumed, while the full
effect of nonlinearity was included. The representation of nonlinearity and dispersion has recently been
improved by Grilli et al. [14] developing a higher-order boundary element method for potential flow over
uneven and moving topography in three dimensions. Their simulations of the nonlinear waves generated by
slide agrees favorably with a set of physical wave tank experiments.

Computationally efficient methods for steep ocean surface waves in three dimensions over otherwise flat
bottom have witnessed recent developments. This includes the method by Clamond and Grue [5] and Grue
[15] using integral equations and analytical inversion by Fourier transform, and the method by Bateman
et al. [3] generalizing the two-dimensional nonlinear pseudo spectral method by Craig and Sulem [7] to
three-dimensions. Craig and Sulem’s method consists in the inversion of a differential operator, using expan-
sions, connecting the free surface potential and the normal velocity of the free surface. The methods were
derived for the cases of infinite or constant, finite water depth. Bateman et al. performed numerical simula-
tions of directionally spread surface water waves, while, Gibson and Swan [12] used the method (and that
of Zakharov [30]) to study focusing wave events in unidirectional and directional sea-states. Recently, Ablo-
witz et al. [1] derived an integral formulation using exponentials. The latter results from a transform of the
Rankine singularity and is similar to the Green function method explored here. Their formulation is valid also
for the case of an uneven bottom. The authors used their formulation to derive, in the case of finite, constant
water depth, the two-dimensional Boussinesq, Benney–Luke, and Kadomtsev–Petviashvili equations, and in
the case of infinite water depth, the nonlinear Schrödinger equation. They computed traveling solitary-lump
wave solutions for the Benney–Luke and the full equations (in the case of weak nonlinearity and weak disper-
sion) using a computational fixed point method. No computations were given for wave motion over uneven
non-moving bottom. The recent generalized Boussinesq method and the integral equation formulation alter-
native have recently been employed to compute steep three-dimensional wave patterns at constant water depth
[9–11].

A somewhat related method to ours is the operator-expansion formalism explored by Smith [26]. This is an
extension of the Hamilton formulation by Watson and West [27] to wave motion over non-moving variable
bottom in three dimensions. Smith compared his simulations with the shoaling experiments of Wei et al. [28]
finding an accuracy similar to the extended Boussinesq models. For the case of two-dimensional wave motion
over flat bottom the method by Smith reduces to the model by Craig and Sulem [7].

In this paper, we derive an explicit formulation and describe a corresponding numerical implementation for
the simulation of water waves that are driven by an arbitrary motion of the sea bottom, or wave motion prop-
agating over an uneven bottom topography, in three dimensions. The formulation assumes the application of
potential theory and is fully nonlinear and fully dispersive. A set of integral equations is derived. This connects
the (unknown) normal velocity at the free surface, Vs, and the (unknown) fluid potential at the moving sea
bottom, /b, to the (known) free surface potential, /s, and the (known) normal velocity of the sea bottom,
Vb. The integral equations are inverted by the use of Fourier transform. The subsequent relations are derived
in Fourier space. The relations are brought on a form that is suitable for the method of successive approxi-
mations, which leads to a convergent final result. In the first approximation we arrive at the linear equations in
Fourier space. With the linear part of the prognostic equations integrated analytically, the equations yield the
wave field at any time instant on analytical form and fits with the linear formulas derived by Hammack [17].
Higher analytical approximations to the equations for Vs and /b are derived. The equations become on a form
where a global, dominant part of the solution is explicit (and is obtained without any equation solving). Its
evaluation is performed by the use of FFT and is therefore very rapid. This part of the solution may be
improved by performing iterations, but practice shows that the method converges so rapidly that the explicit
version is highly useful. There is also a local part of the solution which is evaluated by rapidly convergent inte-
grals. This local contribution involves high-order products between the components of the wave field and rap-
idly decaying kernels. The contribution is very small.

The scarcity of fully nonlinear 3D wave computations of landslide tsunami sources, and otherwise wave
motion over variable bathymetry, motivates for the derivation of alternative simulation methods and model
studies of the phenomenon. It is well known that full methods in 3D are slow, and that steps should be taken
to improve the computational performance of the models. This has stimulated our interest in the derivation of
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analytic equations for fast and robust simulations of strongly nonlinear ocean surface waves interacting the
fixed or moving bottom topography. We shall find that our method reproduces well the physical and numer-
ical experiments by Grilli et al. [14]. An important point is that the computing time, using the present formu-
lation, is several factors smaller (one in eighteen thousand in the actual comparison). We also compute the
strongly nonlinear shoaling of solitary waves, up to the point of breaking, where breaking is realized by
numerical growth of the high-frequency part of the wave spectrum. The numerical breaking corresponds to
physical breaking when the computational results are independent of resolution. It is important to note that
in the present formulation, no smoothing or regridding is used, and a zeros-padding technique is implemented
to avoid aliasing in the computation of cubic products.

2. Mathematical formulation

We study the nonlinear motion of a free surface in three-dimensions. The fluid is assumed to be homoge-
neous and incompressible, and the motion irrotational. The water depth is finite, and the bottom is allowed to
vary in space and time.

2.1. Prognostic equations

Let x = (x1,x2) denote the horizontal coordinate, y the vertical coordinate and t time. Let y = 0 represent
the still water level and y = g(x, t) the surface elevation. The vertical position of the time-variable sea bottom is
represented by y = �h + d(x, t), where in the special case of a flat bottom located at y = �h, the field d(x, t) is
identically zero. Let / denote the velocity potential, $ ¼ ðo=ox1; o=ox2Þ the horizontal gradient and grad/ the
three-dimensional velocity field. We shall use the subscript ‘s’ to denote quantities at the free surface, e.g.
/s(x, t) = /(x,y = g(x, t), t), and the subscript ‘b’ to denote quantities at the sea bottom, e.g. /b(x, t) =
/(x,y = �h + d(x, t), t).

The kinematic and dynamic conditions at the free surface can be written as [15, Eqs. (3) and (4)]:
og=ot � V s ¼ 0; where V s ¼ o/=on=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j$gj2

q
; ð1Þ

o/s=ot þ g=gþ jr/sj
2 � V 2

s � 2V srg � r/s þ jrg�r/sj
2

2ð1þ jrgj2Þ
¼ 0; ð2Þ
where the unit normal vector,~n, is pointing out of the fluid and g denotes the acceleration of gravity. In (2), the
effects of a surface tension and an external pressure are not included.

The scaled normal velocity of the moving sea bottom is introduced by
V b ¼ od=ot ¼ o/=on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j$dj2

q
; ð3Þ
where the normal vector at the sea floor, ~n, is chosen to point into the fluid, see Fig. 1.
Eqs. (1) and (2) are used to integrate g and /s forward in time once the (scaled) normal velocity at the free

surface, Vs, and the velocity potential at the sea floor, /b, are found. The time integration procedure is
Fig. 1. Transversal cut of the model considered.
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described in Appendix A.1. At each time step Vs has to be evaluated, given g, /s and the motion of the sea
bottom. This implies the solution of a coupled set of integral equations for Vs and /b.

3. Solution of the Laplace equation

3.1. Field point on the free surface

Solution of the Laplace equation is obtained by applying Green’s theorem to the velocity potential / and a
suitable source Green function. For an evaluation point that is on the free surface we obtain
Z

SþB

1

~r
þ 1

~rB

� �
o/0

on01
dS0 ¼ 2p/þ

Z
SþB

/0
o

on01

1

~r
þ 1

~rB

� �
dS0: ð4Þ
Here, ~r2 ¼ R2 þ ðy0 � yÞ2; ~r2
B ¼ R2 þ ðy 0 þ y þ 2hÞ2, R = x 0 � x, and R = jx 0 � xj denotes the horizontal dis-

tance between the primed and unprimed positions. Further, S denotes the instantaneous free surface and
B the instantaneous surface of the sea bottom. The normal n1 is pointing out of the fluid (n = n1 at the free
surface, and n = �n1 at the sea-floor). In (4) we have assumed that there is no motion in the far-field.

We assume that S and B are single-valued surfaces and are parameterized by the x-coordinate. We intro-

duce dS0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j$0g0j2

q
dx0 at the free surface S and dS0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j$0d0k2

q
dx0 at the bottom surface B. For the

notation we use g 0 = g(x 0, t), g = g(x, t), d 0 = d(x 0, t) and d = d(x, t). The integral equation may be expressed on
the form
Z

S

1

~r
þ 1

~rB

� �
V 0s dx0 ¼ 2p/s þ

Z
B

1

~r
þ 1

~rB

� �
V 0b dx0 þ

Z
S

/0s
o

on0
1

~r
þ 1

~rB

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j$0g0j2

q
dx0

�
Z
B

/0b
o

on0
1

~r
þ 1

~rB

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j$0d0j2

q
dx0; ð5Þ
which is valid on the free surface at y = g(x, t). For a flat bottom the last term in (5) vanishes. The choice of the
image through ~rB ensures a robust evaluation of all the terms on the r.h.s. of the equation, and the weakly
singular part on the l.h.s. is handled by the use of Fourier transform, see below.

The novel additions in (5) – as compared to previous works – are the terms that account for the variation of
the sea bottom in space and time, i.e. non-zero functions d(x, t) and Vb(x, t). More specifically new integrals
include
Z

B

1

~r
þ 1

~rB

� �
V 0b dx0; �

Z
B

/0b
o

on0
1

~r
þ 1

~rB

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j$0d0k2

q
dx0: ð6Þ
We note that
1

~r
þ 1

~rB

¼ 2

R2

þ 2g
o

oh
1

R2

þ ðd02 þ g2Þ o2

oh2

1

R2

þ 1

R1

; ð7Þ
where R2
2 ¼ R2 þ h2 (and R = jx 0 � xj). The three first terms on the right of (7) are the leading terms of the

singularities on the left of (7). The remaining part is defined by the difference, i.e.
1

R1

¼ 1

~r
þ 1

~rB

� 2

R2

� 2g
o

oh
1

R2

� ðd02 þ g2Þ o
2

oh2

1

R2
and is a small quantity, decaying rapidly with R.
Now, we use that
on

ohn

1

R2

¼ F�1 2pð�kÞn

k
e�ik�x0�kh

� �
; ð8Þ
where k denotes the wavenumber in Fourier space, k = jkj, F denotes Fourier transform and F�1 the inverse
transform. We evaluate the integral
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Z
B

1

~r
þ 1

~rB

� �
V 0b dx0 ¼ F�1f4pe�khFðV bÞ=kg � gF�1f4pe�khFðV bÞg þ F�1f2pke�khFðd2V bÞg

þ g2F�1f2pke�khFðV bÞg þ
Z
B

1

R1

� �
V 0b dx0: ð9Þ
To evaluate the second integral in (6) we first note that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jr0d0j2

q
o

on0
1

~r
þ 1

~rB

� �
¼ ��R � r0d0 þ y 0 � y

~r3
��R � r0d0 þ y0 þ y þ 2h

~r3
B

; ð10Þ
where y 0 = �h + d 0 (on the sea floor) and y = g (on the sea surface). The r.h.s. of the equation may be devel-
oped to
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jr0d0j2
q

o

on0
1

~r
þ 1

~rB

� �
¼ �2r0 � d0r0 1

R2

� �
� 2gr0 � d0r0 o

oh
1

R2

� �
þ 1

R2

; ð11Þ
where the two first terms on the right give the leading contribution to the left-hand side, and 1=R2 is a small
remainder.

We then obtain for the integral
�
Z
B

/0b
o

on
1

~r
þ 1

~rB

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j$0d0j2

q
dx0 ¼ F�1f4pie�khðk=kÞ � Fðdr/bÞg � gF�1f4pie�khk � Fðdr/bÞg

�
Z
B

1

R2

� �
/0b dx0: ð12Þ
The integral equation corresponding to (5), for the case of a non-moving horizontal sea floor, at constant level
y = �h, i.e. d = 0 and Vb = 0, was derived in [15, Eq. (35)]. Adding the two new contributions, given in Eqs.
(9) and (12), we obtain
F�1 1þ eh

k
½FðV sÞ þ ik � Fðgr/sÞ�

� �
¼ F�1fð1� ehÞFð/s � gV ð1Þs Þg þ T ð/sÞ þ T 1ð/sÞ þ NðV sÞ

þ N 1ðV sÞ þ F�1fehFðgðV s � V ð1Þs ÞÞg þ gF�1ðehFðV s � V ð1Þs ÞÞ

þ F�1 2
ffiffiffiffi
eh
p

FðV bÞ
k

� �
� gF�1f2 ffiffiffiffi

eh
p

FðV bÞg þ F�1fk ffiffiffiffi
eh
p

Fðd2V bÞg

þ g2F�1fk ffiffiffiffi
eh
p

FðV bÞg þ F�1 ik

k
� 2 ffiffiffiffi

eh
p

Fðdr/bÞ
� �

� gF�1f2i
ffiffiffiffi
eh
p

k � Fðdr/bÞg þ
Z
B

1

R1

� �
V 0b dx0 �

Z
B

1

R2

� �
/0b dx0;

ð13Þ
where eh = e�2kh and V ð1Þs is given in Eq. (24). The functions T(/s), N(Vs), N1(Vs) and T1(/s) are given in [15,
Eqs. (9), (10), (29) and (30)], respectively. In (13) we have divided by a factor of 2p.

3.2. Evaluation of the velocity potential at the bottom surface B

An additional equation for the velocity potential /b at the uneven sea bottom is required in order to solve
(5), and is obtained by the application of Green’s theorem. In this case we employ 1=~r þ 1=~rC where
~r2 ¼ R2 þ ðy0 � yÞ2 and ~r2

C ¼ R2 þ ðy 0 þ yÞ2 is the image with respect with y = 0. The resulting equation
becomes
2p/b ¼
Z
S

1

~r
þ 1

~rC

� �
V 0s dx0 �

Z
B

1

~r
þ 1

~rC

� �
V 0b dx0 �

Z
S

/0s
o

on
1

~r
þ 1

~rC

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j$0g0j2

q
dx0

þ
Z
B

/0b
o

on
1

~r
þ 1

~rC

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j$0d0j2

q
dx0; ð14Þ
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which is valid on the sea bottom, for y = �h + d(x, t). In the case of a flat free surface the integral on the r.h.s.
over /s vanishes. The choice of Green function leads to a robust evaluation of the terms in the equation, where
the leading part of the weakly singular function 1=~r is integrated using Fourier transform.

We evaluate the terms in (14). For the integration over B we note
1

~r
þ 1

~rC

¼ 1

R
þ 1

R1

� ðd0 þ dÞ o

oð2hÞ
1

R1

þ 1

R3

; ð15Þ
where the first three terms on the right capture the leading behavior of the function on the left,
R2

1 ¼ R2 þ ð2hÞ2, and 1=R3 is a small remainder.
Further,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jr0d0j2
q

o

on0
1

~r
þ 1

~rC

� �
¼ �r0 � ðd0 � dÞr0 1

R

� �
�r0 � ðd0 þ dÞr0 1

R1

� �
� o

oð2hÞ
1

R1

þ 1

R4

: ð16Þ
For the integration over S we obtain
1

~r
þ 1

~rC

¼ 2

R2

� 2d
o

oh
1

R2

þ 1

R5

; ð17Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jr0g0j2

q
o

on0
1

~r
þ 1

~rC

� �
¼ �r0 � 2g0r0 1

R2

� �
þ 1

R6

: ð18Þ
Now, using (8) and
1

R
¼ F�1 2p

k
e�ik�x0

� �
;

1

R1

¼ F�1 2p
k

e�ik�x0�2kh

� �
; ð19Þ
we may evaluate the integrals in (14). The equation becomes:
2p/b ¼ 2pF�1ðAÞ þ
Z
S

1

R5

� �
V s dx0 �

Z
B

1

R3

� �
V b dx0 �

Z
S

1

R6

� �
/s dx0 þ

Z
B

1

R4

� �
V s dx0; ð20Þ
where
A ¼ 2
ffiffiffiffi
eh
p

FðV sÞ
k

þ 2d
ffiffiffiffi
eh
p

FðV sÞ �
ð1þ ehÞFðV bÞ

k
� dehFðV bÞ � ehFðdV bÞ þ

2ik

k
� ffiffiffiffi

eh
p

Fðgr/sÞ

þ ehFð/bÞ � dð1� ehÞkFð/bÞ �
ik

k
� ð1þ ehÞFðdr/bÞ: ð21Þ
By taking the Fourier transform on both sides of (20) we obtain
Fð/bÞ ¼ Fð/ðV Þb Þ þ FðdV bÞ þ
ik

k sinhðkhÞ � Fðgr/sÞ �
ik

k tanhðkhÞ � Fðdr/bÞ

� 1

1� eh
FðdF�1fkð1� ehÞ½Fð/bÞ � Fð/ð1Þb Þ�gÞ þ

Z
S

1

R5

� �
V s dx0 �

Z
B

1

R3

� �
V b dx0

�
Z
S

1

R6

� �
/s dx0 þ

Z
B

1

R4

� �
V s dx0; ð22Þ
where
Fð/ðV Þb Þ ¼
FðV sÞ

k sinhðkhÞ �
FðV bÞ

k tanhðkhÞ : ð23Þ
3.3. Successive approximations

The solution of the coupled equations (13) and (22) yields Vs and /b. Since the equations are linear in Vs

and /b, a successive evaluation strategy is warranted. The iterative procedure is initiated by deriving a first
approximation where g, g 0, d and d 0 are put to zero in (13) and (22), giving
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FðV ð1Þs Þ ¼ k tanhðkhÞFð/sÞ þ
FðV bÞ

coshðkhÞ ; ð24Þ

Fð/ð1Þb Þ ¼
1

coshðkhÞFð/sÞ �
tanhðkhÞ

k
FðV bÞ; ð25Þ
which determine FðV ð1Þs Þ and Fð/ð1Þb Þ explicitly in terms of Fð/sÞ and FðV bÞ. The result (24) and (25) is inde-
pendent of the choice of Green function.

For motion of small amplitude, (24) and (25) give the linear solution of the wave generation problem.
We observe that the entire motion is driven by the normal velocity of the sea bottom, i.e.

V b ¼ o/=on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrdj2

q
. Eq. (24) expresses Vs in terms of Vb for all times and may be plugged into the

linear version of the prognostic equations which is integrated analytically. In this way we obtain an expli-
cit solution to the linear wave field generated by the motion of the moving bottom. This linear wave field
has been obtained long ago and is documented in several publications, including e.g. Hammack [17]. He
examined the applicability of the linear approximation in the wave generation region comparing theory
and experiment finding good agreement when the total amplitude of the bed displacement was small.
Our formulation gives the same analytical result as that of Hammack [17, Eq. (17)], given the same initial
motion. (We note that the quantities (Vs,/s) and (Vb,/b) are evaluated at the position of the moving free
surface and the moving bottom and therefore contain nonlinear components, which are small when the
generation amplitude is small, however.)

An improved approximation to the nonlinear wave field is obtained by keeping terms that are linear in g, g 0,
d and d 0, giving
FðV ð2Þs Þ ¼ FðV ð1Þs Þ � k tanhðkhÞFðgV ð1Þs Þ þ ik � Ffg$/sg �
1

coshðkhÞ ik � Ffd$/ð1Þb g
� �

; ð26Þ

Fð/ð2Þb Þ ¼ Fð/ð1Þb Þ �
1

coshðkhÞFðgV ð1Þs Þ � i
tanhðkhÞ

k
k � Ffd$/ð1Þb g þ FðdV bÞ; ð27Þ
where V ð1Þs and /ð1Þb are obtained from (24) to (25). By performing another analytical iteration, keeping terms in
the kernels of the integral equations that are quadratic in g, g 0, d and d 0, we obtain
FðV ð3Þs Þ ¼ FðV ð2Þs Þ � k tanhðkhÞFðgðV ð2Þs � V ð1Þs ÞÞ �
k2

2
Fðg2V ð1Þs Þ

� �

þ k
1þ eh

FðgF�1½�ik � Ffg$/sg�Þ þ i
eh

2
k � Ffg2$/sg � F g2F�1 k2

2
/s

� �� �� �

þ k
1þ eh

k
ffiffiffiffi
eh
p

Ffd2V bg þ 2i

ffiffiffiffi
eh
p

k
k � Ffd$ð/ð2Þb � /ð1Þb Þg

� �
; ð28Þ
where V ð1Þs and /ð1Þb are obtained from (24) to (25), V ð2Þs and /ð2Þb from (26) to (27) and eh = exp(�2kh). The

equations for V ð1Þs , V ð2Þs , V ð3Þs and Vs below are valid on the exact position of the free surface. Similarly, the
potential and normal velocity at the sea floor are evaluated on the exact position of the sea floor.

Both (26), (27) and (28) are independent of the choice of Green function. The latter is important for the
formulas that are derived below, however.

3.4. Complete evaluation of Vs and /b

The Fourier inversion of the complete equation (5) gives
FðV sÞ ¼ FðV ð3Þs Þ þ FðV ðR;1Þs Þ þ FðV ðR;2Þs Þ; ð29Þ
where
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FðV ðR;1Þs Þ ¼ � k tanhðkhÞFfgðV s � V ð2Þs Þg �
i

coshðkhÞ k � Ffd$ð/b � /ð2Þb Þg
� �

þ k
1þ eh

FðgF�1½ð1þ ehÞðFðV sÞ � FðV ð2Þs ÞÞ�Þ

þ k
1þ eh

F gF�1 ð1þ ehÞ k tanhðkhÞFfgðV s � V ð1Þs Þg �
i

coshðkhÞ k � Ffd$ð/b � /ð2Þb Þg
� �� �� �

� k
1þ eh

F g2F�1 kð1þ ehÞ
2

FðV s � V ð1Þs Þ
� �� �

þ k
2
ð1þ ehÞFðg2ðV s � V ð1Þs ÞÞ

� �
; ð30Þ

FðV ðR;2Þs Þ ¼ k
1þ eh

F½�NSðV sÞ � NBðV bÞ þ T Sð/sÞ � T Bð/bÞ�; ð31Þ
where the dominant part has already been obtained in V ð3Þs .
Correspondingly, the Fourier transform of the complete equation (14) gives
Fð/bÞ ¼ Fð/ð2Þb Þ þ Fð/ðR;1Þb Þ þ Fð/ðR;2Þb Þ; ð32Þ

Fð/ðR;1Þb Þ ¼ 1

k sinhðkhÞFðV s � V ð2Þs Þ � i
k

k tanhðkhÞ � Ffd$ð/b � /ð1Þb Þg

� 1

1� eh
F dF�1 kð1� ehÞFð/b � /ð1Þb Þ � 2

ffiffiffiffi
eh
p

FðV s � V ð1Þs Þ
h i	 


; ð33Þ

Fð/ðR;2Þb Þ ¼ 1

1� eh
F½MBðV bÞ þ SBðV sÞ þ DBð/sÞ þ P Bð/bÞ�; ð34Þ
where the V ðkÞs ; k ¼ 1; 2; 3; and /ðkÞb ; k ¼ 1; 2; are obtained above. The functions TS(/s), NS(Vs), NB(Vb),
TB(/b), MB(Vb), DB(/s), SB(Vs) and PB(/b) are integrals over highly nonlinear products of the wave motion
characteristics multiplied by kernels that decay quickly with the radial distance R. The integrals have very lo-
cal contributions in the x1,x2-plane. In the practical evaluation is suffices to integrate over rectangles (squares)
with length corresponding one typical wavelength in the x1- and x2-directions. The functions are given in
Appendix A.

The evaluation of (29) and (32) is composed by a dominant part which involves a global evaluation of the
wave field and is evaluated using FFTs. Highly accurate results (see below) are obtained from the global FFT-
part which also is very rapid. The remaining part is highly nonlinear, highly local, and its evaluation relatively
slow. It is therefore tempting to work with the fast FFT-part which provides a highly accurate inversion of the
Laplace equation. Together with the exact boundary conditions they provide a highly nonlinear and dispersive
simulation model of the wave field.

We note that a larger fraction of the local contributions to Vs and /b may in principle be recast in a global
FFT-form. This has been tested out for wave propagation in water of constant depth, with negative conclu-
sion: a continued expansion of the kernels was found to lead to divergence of the otherwise stable numerical
scheme [9].

4. Numerical implementation: convergence, accuracy

The part of the horizontal plane used for numerical integration has length L and width W. The number of
nodes along the x1-direction (length) is 2N1, and along the x2-direction (width) 2N2. The reason for the factor
of 2 is that we use a zeros-padding technique in the evaluation of the convolution products, where in the Fou-
rier space, the upper N1 and N2 of the Fourier modes are put to zero. The effect of aliasing is then avoided in
the convolution products up to cubic order. The spectrally accurate trapezoidal rule is used in the numerical
evaluation of the integrals. For the numerical integration, the computational grid is translated vectorially by
(0.5Dx1,0.5Dx2).

The numerical performance of the method is documented for three-dimensional computations of wave gen-
eration caused by a moving bottom. In these examples the computational domain is L · W = 300h · 10h,
where h is the water depth. Various discretizations are tested.
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The bottom shape and motion are given by d(x, t) = dt(t) dx(x). The time dependence dt(t) is chosen on the
form dt(t) = 1 � [e�bt/a][acos(at) + b sin(bt)]. This function allows for an exponential behavior, characterized
by the parameter b, as well as oscillating behavior, characterized by the parameter a. From this form, we can
express the linear solution of the problem by computing the corresponding linear wave elevation as described
in Eq. (A.4). For practical purposes, we put a = p/10 and b = 10a. This choice corresponds roughly to a pure
exponential of the motion of the sea floor. The resulting function dt(t) is illustrated in Fig. 2a. In the following
examples this choice of temporal evolution is kept while the function is varied.

We first simulate the generation of long-crested waves propagating along the numerical tank. The form
dx(x) of the bottom motion is modeled by a square-shaped function as illustrated in Fig. 2b. The width of
the displaced part of the bottom is 50 times the water depth along the x1-direction (and 10 times the water
depth along the x2-direction). The form of the moving bottom is the same as in Hammack [17] who combined
experimental measurements with linear analysis of the tsunami waves generated in a wave tank.

In the first numerical experiment the maximum vertical excursion of the moving part of the sea-floor is 15%
of the water depth, i.e. dmax/h = 0.15. The simulations show how the wave train is generated and moves out of
the generation zone (Fig. 3).

We study the convergence of the method where the prognostic equations (1) and (2) are integrated in time
up to t

ffiffiffiffiffiffiffiffi
g=h

p
¼ 100, with solution of the Laplace equation obtained by the full equations (29) and (32). The

latter are obtained by an iterative procedure which is initiated by first evaluating V ð3Þs from (28) and /ð2Þb from
(27). These are inserted into (29) and (32). The improved estimates of Vs and /b – obtained explicitly without
any equation solving – are then inserted into (29) and (32), obtaining improved values. This procedure is
repeated once more. In all cases we have studied, the iteration has then converged, meaning that there is
no gain by continuing the iteration.

We study the convergence of the amplitude of the leading wave crest after t
ffiffiffiffiffiffiffiffi
g=h

p
¼ 100, see Fig. 3, lower

plot. The amplitude obtained from the fully nonlinear equations (29)–(32) is given for various resolutions in
Table 1. The number of collocation points is 2N1 = 1024, 2048, 4096, and 2N2 = 16, 62, 64. The relative var-
iation of the amplitude is less than one per mille. The results show a systematic convergence towards a non-
dimensional value of the amplitude of 0.10224 (with a small deviation for the finest resolution in the lateral
direction).

Next we test the computation of the amplitude, ym, and position, x1,m, of the leading crest at time
t
ffiffiffiffiffiffiffiffi
g=h

p
¼ 100, comparing the full solution, obtained by Eqs. (29)–(32), to the approximation obtained by

V ð3Þs , given by the explicit formula (28). The approximations V ð2Þs given by (26), and V ð1Þs given by (24) are also
tested. We evaluate the relative difference between the full solution and the various approximations, i.e.
�
ðnÞ
Amp: ¼

jymðV ðnÞs Þ � ymðV full
s Þj

ymðV full
s Þ

;

�
ðnÞ
Pos: ¼

jx1;mðV ðnÞs Þ � x1;mðV full
s Þj

x1;mðV full
s Þ

:
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Fig. 2. Time and spatial dependence dt and dx for the bottom elevation where d(x, t) = dt(t)dx(x).
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Fig. 3. Surface elevation due to a sudden rise of the bottom (as defined in Fig. 2). Surface at t ¼ f0; 20; 40; 60; 80; 100g
ffiffiffiffiffiffiffiffi
h=g

p
, fully

nonlinear (—) and linear solution (––). dmax/h = 0.15.

Table 1
Fully nonlinear amplitude of the wave front at t

ffiffiffiffiffiffiffiffi
g=h

p
¼ 100 for several discretizations

2N2 2N1

1024 2048 4096

16 0.10230 0.10228 0.10224
32 0.10223 0.10224 0.10224
64 0.10220 0.10223 0.10220

dmax/h = 0.15. Numerical wave tank: 300h · 10h (length · width). Domain of local integration: 10h · 10h.

D. Fructus, J. Grue / Journal of Computational Physics 222 (2007) 720–739 729
The results displayed in Table 2 – for dmax/h = 0.15 – illustrate that V ð3Þs approximates V full
s with a relative error

that is 0.0014 for the amplitude and 0.07 · 10�4 for the phase (position). The table illustrates, moreover, that
V ð2Þs approximates V full

s quite well in this example, while V ð1Þs gives only a coarse estimate. The various solutions
are illustrated in Fig. 4.

Results from another simulation with larger nonlinearity, i.e. dmax/h = 0.2, displayed in Table 3, illustrate
that V ð3Þs approximates V full

s with a relative error that is 0.0012 for the amplitude and 2 · 10�4 for the phase
(position). While V ð2Þs gives a fairly good approximation the motion, the linear estimate (by V ð1Þs ) is quite
far from the full solution. The various solutions are illustrated in Fig. 5.

Calculations of the elevation and speed of the leading wave crest are shown in Fig. 6. The results illustrate
that V ð3Þs is very close to V full

s , and that also V ð2Þs provides a close match in this case, while the linear approx-
imation V ð1Þs models a different physics.



Table 2
Maximum-amplitude (ym) and position (x1,m) of the wave front at t

ffiffiffiffiffiffiffiffi
g=h

p
¼ 100

Vs Amp. (ym) Pos. (x1,m) �
ðnÞ
Amp: �

ðnÞ
Pos:

V ð1Þs 0.09377 265.908 0.0828 0.0281

V ð2Þs 0.10253 273.644 0.0029 0.0002

V ð3Þs 0.10210 273.591 0.0014 0.0000

V full
s 0.10220 273.589 – –

dmax/h = 0.15. Comparison between V ð1Þs (given by Eq. 24), V ð2Þs (given by Eq. 26), V ð3Þs (given by Eq. 28), V full
s (given by Eq. 29). All

computations with 2N1 = 4096, 2N2 = 64. Evaluation of integral part corresponding to Vs
(R,2) in Eq. (31) over 10h · 10h (local

integration).
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Fig. 4. Blow-up of Fig. 3 at t ¼ 100
ffiffiffiffiffiffiffiffi
h=g

p
. (dmax + h)/h = 0.15. V ð1Þs (––), V ð2Þs (– Æ–), V ð3Þs (� � �), fully nonlinear (—).

Table 3
Same as Table 2 but dmax/h = 0.2

Vs Amp. (ym) Pos. (xm) �Amp. �Pos.

V ð1Þs 0.12497 265.908 0.1003 0.0349

V ð2Þs 0.13986 275.662 0.0069 0.0005

V ð3Þs 0.13873 275.564 0.0012 0.0002

V full
s 0.13890 275.514 – –

All computations with 2N1 = 4096, 2N2 = 16. Evaluation of integral part corresponding to V ðR;2Þs in Eq. (31) over 10h · 10h (local
integration).
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These tests illustrate that the formulation with V ð3Þs represents an excellent approximation to solution of the
Laplace equation. The relative difference between V full

s and V ð3Þs is very small. It is noted that the evaluation of
V ð3Þs is explicit and requires only the use of FFTs. Even for a maximum displacement of the bottom reaching
20% of the water depth, the relative error is of order 10�3 for the amplitude and 10�4 for the phase after a time
which is hundred times

ffiffiffiffiffiffiffiffi
h=g

p
. In dimensional terms, this corresponds to 33 min if the water depth is 4000 m

and 16 min 40 s if the water depth is 1000 m.
The fast (FFT) version of the fully nonlinear, fully dispersive method is constituted by the prognostic equa-

tions (1) and (2) with Vs approximated by (28). This version is explicit. The linear part of (1) and (2) is inte-
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Fig. 5. Similar result as in Fig. 4 with dmax/h = 0.20. V ð1Þs (––), V ð2Þs (– Æ–), V ð3Þs (� � �), fully nonlinear (—).
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grated analytically in Fourier space (providing results to machine precision) while the nonlinear part of the
equations are integrated by an RK-54 method as specified in Appendix A. Below we compare our method
to published results for (i) the nonlinear wave field generated in a wave tank by the model of a slide, including
state of the art nonlinear simulations of the waves, and (ii) the interaction between a steep solitary wave and a
slope.

5. Waves generated by a submarine slide

The set of quasi two-dimensional laboratory experiments in scale 1:1000 as well as the complementary fully
nonlinear and fully dispersive simulations were documented by Grilli et al. [14]. In the experiments a semi-
elliptical shaped geometry with initial submergence of d = 261 m was moving down a slope, as visualized in
Fig. 7. The figure indicates the location of the wave gauges that were used to record the experimental wave
field above the slide.

In order to make consistent comparisons with the experiments and the simulations in [14], we choose
exactly the same numerical parameters as in the original study. The bottom profile is taken identically as in
their numerical setup, with a slope angle of h = 15� and a total water depth of 1018.3 m. Moreover, the shelf
is flat over 142.51 m with the bottom localized at y = �76.37 m. A semi-ellipse with thickness T = 52 m and
length B = 1000 m simulates the slide and is moving downslope with an along-slope acceleration given by
€SðtÞ ¼ a0½ðcoshðt=t0ÞÞ�2 � ðcoshðat=t0ÞÞ�2� where t0 = 80 s and a0 = 0.574 m/s2. The second term in the expres-
sion for the acceleration was chosen to correspond to a ramping function. By taking a = 50, this leads to a
ramping over approximately t0/20 corresponding to the ramping chosen by Grilli et al. [14].

Our results are compared to the experiments and the simulations by Grilli et al. [14] where the results from
the latter are interpolated from the digitized data from their Fig. 7. They documented an experimental
jgmaxj0 = 5.38 at the gauge g0, while we find here a numerical value of jgmaxj0 = 5.35 at this position, which
is a very close match. The spacial wave field predicted by the present method exhibits a very good agreement
with the experimental data, see Fig. 8. This is also true for the time series at each of the gauges, see Fig. 9. It is
evident that the present method provides results which are closely matching the experimental ones. A slight
0 500 1000 1500 2000 2500 3000 3500 4000

0

Fig. 7. Bottom elevation at t = 0 (—) and t = 40 s (––). The plus sign correspond to the location of the wave gauges in the experimental
setup by Grilli et al. [14].



0 1000 2000 3000 4000 5000 6000

0
5
5

0
5
5

0
5
5

0
5
5

0
5
5

0
5

x1

Fig. 8. Surface elevation due to a submarine landslide (as defined in Fig. 7). Free surface at t = {0;14;30;46;60;76}, numerical (—) vs.
experimental results by Grilli et al. [14] (s). The plus sign correspond to the location of the gauges as depicted in Fig. 7.

732 D. Fructus, J. Grue / Journal of Computational Physics 222 (2007) 720–739
overprediction of the trough as compared to the method of Grilli et al. [14] can been seen on all gauges. This
leads to a better match to experimental results, especially for the offshore gauges.

In order to more closely compare the computational efficiency between the present formulation and that
used in [14], we have made runs using the same spatial discretization. Since the present method requires
the bottom to be periodic, we have implemented a symmetric version of the method with respect to x = 0.
The tank is hence considered to be twice as long as that used in [14]. It is discretized over 512 collocation nodes
in the main direction and 4 points in the transverse, corresponding to Dx1 = 95 m (as compared to
Dx0 = 101.27 m in [14]) and Dx2 = 100 m. For this special comparison we have implemented a second-order
constant time stepping Runge–Kutta scheme. This corresponds to the time stepping procedure used by Grilli
et al. (This means that the time stepping procedure is the same as in Grilli et al. The difference is the procedure
for the inversion of the Laplace equation, for which the speed is compared. The more accurate time stepping
procedure, documented in Appendix A.1 is even faster, since longer time steps can be applied, because of the
analytical integration of the linear part, and the use of the (variable) time-step control. The two different time-
stepping procedures have been compared, and produce the same numerical results for non-dimensional time
(t) up to 80.) Moreover, we choose the time step Dt = 0.456 s, identically as in their paper. This yields a con-
stant Courant number of Cr = 0.48 and is similar to the one they used. We note that the time stepping pro-
cedure is not entirely identical, since Grilli et al. used a constant discretization along the actual free surface,
while our is constant in the x1,x2-plane. Hence, taking a discretization which is somewhat finer and assuming
the time step to be constant appears to be a fair way of comparing the numerical efficiency of the two codes.
The total number of nodes in our simulations is 2048 and we perform computations on a Laptop with a
1.2 GHz P4M processor. The computing time per time step is obtained by an average over 10 runs of length
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Fig. 9. Free surface elevation at the wave gauges g0,g1,g2,g3, numerical results from V ð3Þs (� � �) as compared to laboratory (––) and
numerical (—) experiments by Grilli et al. [14].
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176Dt each which showed little or no variation. We find that the computing time per time step is approxi-
mately 0.023 s while Grilli et al. [14] reported a computing time per time step of 404 s on a Mac G4-
450 MHz. Since these architectures are somewhat equivalent (ours is actually a bit faster) we can compare
directly the computing time, which is 18,000 times faster using the present method. This gain is easily
explained, since the formulation we have derived and implemented is explicit, analytical and evaluated by
FFT only.

6. Computations of shoaling

It is of interest to use the method to simulate the shoaling of the waves on a slope. Waves are computed up
to the point of numerical (and physical) breaking. The present method (in three dimensions) is compared to
the two-dimensional nonlinear simulations of shoaling solitary waves performed by Wei et al. [28]. They inves-
tigated the performance of a fully nonlinear Boussinesq model (in the figures referred to as FNBM) and com-
pared to the extended Boussinesq model by Nwogu [22] (BM) and the fully nonlinear potential flow model by
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Grilli et al. [13] (FNPF). Wei et al. studied the motion of three different solitary waves propagating up three
different slopes. We shall here reproduce the case with slope 1:15, which is the steepest case where the fluid
velocity is given, and use identically the same three input solitary waves as in [28], namely with amplitudes
H0/h = 0.3, 0.45 and 0.6 where H0 denotes the wave amplitude and h the water depth outside the shelf-slope.

Fig. 10 shows half of the computational domain along the wave propagation direction. The input solitary
waves were obtained from the exact method by Tanaka [29] and compared to the input waves in Wei et al. [28],
without any distinguishable difference in the results presented here. An example of the evolution of the solitary
wave with H0/h = 0.3 over the slope is presented in Fig. 10 at several times of the simulation. In the simula-
tions the reference depth is put to h/2. Two discretizations are used, viz. Dx1/h = 0.13, 0.065 and Dx2/h = 0.3.
The waves are computed up to numerical breaking. More precisely, the wave profile at t

ffiffiffiffiffiffiffiffi
g=h

p
¼ 11 exhibits a

rise of the energy at high wavenumbers in the wavenumber space, see Fig. 11. It is important to note that in the
numerics, the breaking is independent of the numerical resolution, and thus models physical steepening
towards physical breaking.

Results for the nondimensional wave amplitude H/hv are presented in Fig. 12, where H denotes the crest
height of the solitary wave and hv the water depth beneath the crest. Three different degrees of nonlinearity
(i.e. solitary wave amplitude) are considered and compared to results from the three models used in Wei
et al. [28] who simulated the waves up to the point of numerical breaking. We have digitized Figs. 5c and
7c in [28] for subsequent extraction of the data and comparison to the simulations using the present model.
It can be seen from the plots that the present formulation provides a very good match concerning wave ampli-
tude evolution for the highly nonlinear cases in the simulations.

The degree of nonlinearity in the simulations is also indicated by comparing the maximal fluid velocity at
the wave crest and the wave speed. Our simulations show that the two quantities become almost equal in the
end of the simulation, with the fluid velocity being as large as 90% of the wave speed before the computations
are stopped (Fig. 13). Our results for the fluid velocity compare well with the fully nonlinear 2D simulations of
Grilli et al. [13] almost up to breaking. We note that in the present simulations no smoothing or regridding are
applied. The numerical results for the wave speed agree with the Boussinesq model but predict somewhat
Fig. 10. Bottom topography and surface elevation for the shoaling of a solitary wave of initial elevation H0/h = 0.30 over a slope s = 1:15.
Elevation at t

ffiffiffiffiffiffiffiffi
g=h

p
¼ 0 (—), t

ffiffiffiffiffiffiffiffi
g=h

p
¼ 6 (––) and t

ffiffiffiffiffiffiffiffi
g=h

p
¼ 11 (– Æ–).

Fig. 11. Spectrum jFðgÞj at t
ffiffiffiffiffiffiffiffi
g=h

p
¼ 11 in Fig. 10, with Dx1 = 0.13h (solid line) and Dx1 = 0.065h (+ + +).
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Fig. 12. Comparison between FNLP (—), BM (–––), FNBM (– Æ–) from Wei et al. [28] and the present method with V ð3Þs (� � �). Shoaling on
a slope 1:15.
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Fig. 13. Comparison between FNLP (—), BM (–––), FNBM (– Æ–) from Wei et al. [28] and the present method with V ð3Þs (� � �) of wave crest
celerity C0c and particle velocity V 0c at the crest for the solitary wave depicted in Fig. 12a.
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smaller values than the fully nonlinear 2D code. The simulations with our model with the Vs replaced by V ð3Þs

illustrate the usefulness of the method up to the point where the waves are breaking.

7. Conclusion

We have derived a fully nonlinear and fully dispersive method to simulate the interaction between free sur-
face flows and an uneven and/or moving bottom topography. The three-dimensional method assumes poten-
tial flow and is useful to simulate wave fields of large amplitude over the whole range of wavenumbers. The
linear part of the prognostic equations (1) and (2) is integrated analytically in time providing results to
machine precision while the nonlinear part is integrated using an RK-54 method with variable step-size con-
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trol. The nonlinear normal velocity of the free surface is obtained by Eq. (28). No smoothing or regridding are
applied. A partially dealiased scheme using zeros padding of the spectra is implemented. The formulation
enables fast simulations of the nonlinear and dispersive wave fields over bathymetry of appreciable variation,
or the waves caused by the tectonic or slide generated motion of the sea floor, in three dimensions. The code is
useful to predict the nonlinear shoaling almost up to physical breaking. The latter is evidenced by the growing
wave induced fluid velocity that becomes equal to the wave speed (for the long waves). The wave profile exhib-
its a rise of the energy at high wavenumbers in the wavenumber space. In the numerics, the breaking is inde-
pendent of the numerical resolution, and thus represents the physics involved.

The derivations in this paper have been motivated by needs for improved representation of the dispersion
effects in models for the strongly nonlinear interaction between the surface waves and variable bottom topog-
raphy in space and time. On the onset, our method is similar to the fully nonlinear Green function method
implemented and tested out by Grilli et al. [14]. It departs from the latter on one important point, however.
The coupled integral equations (4) and (14) that result from the Laplace equation are here brought on a form
where the dominant, leading contribution is explicit and is evaluated by fast Fourier transform (Eq. 28).
Moreover, the resulting expressions are simple and useful for analytical manipulations. Practice documents
that the explicit FFT-part of the solution captures the essential part of the wave field. The method reproduces
the experimental elevation resulting from the slide motion in a wave tank. A direct comparison of the com-
puting time shows that the present method is significantly faster than what has been documented by Grill
et al. (in this example 18,000 times faster).

The efficiency of the method makes possible the computation of realistic tsunami waves over appreciable
parts of the sea. This includes the transformation of the wave field due to strongly variable topography,
e.g. in the transition from the deep to shallow regions, where the water depth may also be strongly oscillating.
The full representation of nonlinearity and dispersion is important in the accurate prediction of solitary waves
which may emerge in the shallow sea, as observed in the Strait of Malacca (Pelinovsky, personal communi-
cation). The waves may be computed up to the shore line where transparent dampers are needed to close
the formulation (see e.g. [6]). The onshore flow may be obtained by long wave methods (see e.g. [24]).
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Appendix A

A.1. Time stepping procedure

The prognostic equations (1) and (2) can be rewritten by extracting their linear part and by taking their
Fourier transform, deriving the following skew-symmetric form: F̂ t þ �AF̂ þ B̂ ¼ N̂ , where
F̂ ¼
kFðgÞ

kx
g Fð/Þ

 !
; �A ¼

0 �x

x 0

� �
; B̂ ¼

� k
cosh kh FðV bÞ

0

� �
; ðA:1Þ
x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh kh
p

and N̂ corresponds to the nonlinear contribution. The term B̂ corresponds to the linear con-
tribution from the moving bottom. The linear part of the prognostic equations is integrated analytically,
implying the introduction of an integrating factor (see [4, p. 265]):
F̂ ðk; tÞ ¼ exp½�Aðt0 � tÞ�Ĝðk; tÞ �
Z t

t0

exp½�Aðt0 � tÞ�B̂ðk; t0Þ dt0; ðA:2Þ

Ĝðk; tÞ ¼ exp½�Aðt � t0Þ�F̂ ðk; tÞ þ
Z t

t0

exp½�Aðt0 � t0Þ�B̂ðk; t0Þ dt0; ðA:3Þ
which yields the equation Ĝt ¼ exp½�Aðt � t0Þ�N̂ ; Ĝðk; t0Þ ¼ F̂ ðk; t0Þ.
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This nonlinear system is integrated via a six-stages fifth-order Runge–Kutta scheme. The time stepping is
controlled by the use of an embedded fourth-order scheme (Dormand and Prince, see [16]). In addition, a spe-
cial ‘‘PI step size control’’ technique is used for the stabilization of the time step [16, IV Section 2].

If we neglect the nonlinear terms, then the following linear solution is obtained
FðgÞðk; tÞ ¼ FðgÞ0 cosðT Þ þ x
g

Fð/Þ0 sinðT Þ þ 1

cosh kh

Z t

t0

FðV bÞðk; t0Þ cosðt0Þ dt0;

Fð/Þðk; tÞ ¼ Fð/Þ0 cosðT Þ � g

x
FðgÞ0 sinðT Þ � g

x cosh kh

Z t

t0

FðV bÞðk; t0Þ sinðt0Þ dt0;

ðA:4Þ
where FðgÞ0 ¼ FðgÞðk; t0Þ, Fð/Þ0 ¼ Fð/Þðk; t0Þ, T = x(t � t0) and T 0 = x(t � t 0). If the bottom motion starts
from rest at t0 = 0, then the linear expression (A.4) for the surface elevation yields Hammack’s equation [17].

A.2. Remaining integrals

Introducing
D0 ¼
g0 � g

R
; D1 ¼

g0 þ g
R1

; D2 ¼
d0 � g

R2

; D3 ¼
d0 þ g

R2

;

where g 0 = g(x 0, t), g = g(x, t), d 0 = d(x 0, t), d = d(x, t), R = jx 0 � xj, R2
1 ¼ R2 þ 4h2 and R2

2 ¼ R2 þ h2, the
remaining integrals are:
NSðV sÞ ¼
1

2p

Z
V 0s

1

~r
þ 1

~rB

� 1

R1

� 1

R
þ D2

0

2R
þ 2hD1

R2
1

� D2
1

R1

�1

2
þ 6h2

R2
1

� �� �
dx0

T Sð/sÞ ¼
1

2p

Z
/0s

1

~r3
� 1

R3

� �
½R � r0g0 � ðg0 � gÞ� dx0

þ 1=2p
Z

/0s KT 2½R � r0g0 � ðg0 þ gÞ � 2h� þ D2
1

R3
1

�3

2
þ 30h2

R2
1

� �
½R � r0g0 � ðg0 þ gÞ�

� �
dx0

NBðV bÞ ¼
1

2p

Z
�V 0b

1

~r
þ 1

~rB

� 2

R2

� hðD2 � D3Þ
R2

2

� D2
2 þ D2

3

R2

�1

2
þ 3h2

2R2
2

� �� �
dx0

T Bð/bÞ ¼
1

2p

Z
/0b ðKTB1 þKTB2Þ½R � r0d0 � d0� þ ðKTB1 �KTB2Þðgþ hÞf g dx0

þ 1=2p
Z

/0b
�3

R5
2

þ 15h2

R7
2

� �
ðR � r0d0 � d0 þ hÞðd02 þ g2Þ þ gðd0 � gÞ
n o

dx0

SBðV sÞ ¼
1

2p

Z
V 0s

1

~r
þ 1

~rC

� 2

R2

� 2hd

R3
2

� �
dx0

P Bð/sÞ ¼ �
1

2p

Z
/0s

1

~r3
þ 1

~r3
C

� 2

R3
2

� �
½R � r0g0 � g0� þ 1

~r3
� 1

~r3
C

þ 6hg0

R5
2

� �
ðd� hÞ

� �
dx0

MBðV bÞ ¼
1

2p

Z
V 0b

1

R
þ 1

R1

� 1

~r
� 1

~rC

� 2h
d0 þ d

R3
1

� �
dx0

DBð/bÞ ¼
1

2p

Z
/0b 2d

1

~r3
C

þ 1

~r3
� 1

R3
� 1

R3
1

� �
½R � r0d0 � ðd0 � hÞ�

� �
dx0

� 1=2p
Z

/0b
1

~r3
C

� 1

~r3
þ 1

R3
� 1

R3
1

� �
ðd� hÞ þ 12h2 d0 þ d

R5
1

� �
dx0;
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where
KT 2
¼ 1

~r3
B

� 1

R3
1

þ 6hD1

R4
1

� D2
1

R3
1

�3

2
þ 30h2

R2
1

� �
�KTB1 ¼

1

~r3
� 1

R3
2

� 3hD2

R4
2

� D2
2

R3
2

�3

2
þ 15h2

2R2
2

� �� �
;

KTB2 ¼ 1

~r3
B

� 1

R3
2

þ 3hD3

R4
2

� D2
3

R3
2

�3

2
þ 15h2

2R2
2

� �� �
:
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